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Contract abstract 
The overall goal of this contract is to provide virtually all individuals with a cervical level 

spinal cord injury, regardless of injury level and extent, with the opportunity to gain additional 
useful function through the use of FNS and complementary surgical techniques. Specifically, we 
will expand our applications to include individuals with high tetraplegia (C1-C4), low tetraplegia 
(C7), and incomplete injuries. We will also extend and enhance the performance provided to the 
existing C5-C6 group by using improved electrode technology for some muscles and by 
combining several upper extremity functions into a single neuroprosthesis. The new technologies 
that we will develop and implement in this proposal are: the use of nerve cuffs for complete 
activation in high tetraplegia, the use of current steering in nerve cuffs, imaging-based 
assessment of maximum muscle forces, denervation, and volume activated by electrodes, 
multiple degree-of-freedom control, the use of dual implants, new neurotization surgeries for the 
reversal of denervation, new muscle transfer surgeries for high tetraplegia, and an improved 
forward dynamic model of the shoulder and elbow.  During this contract period, all proposed 
neuroprostheses will come to fruition as clinically deployed and fully evaluated demonstrations.  
 
 
Summary of activities during this reporting period 
  
The following activities are described in this report: 

• Surgical implantation of nerve cuff electrodes 
• Percutaneous evaluation of nerve cuff electrodes in high tetraplegia 
• Feed-forward control of neuroprosthetic systems characterized by redundant muscles 

acting on multiple degrees of freedom 
• Real-time EEG control of virtual cursor/arm movements 

 
 
Surgical implantation of nerve cuff electrodes 
 
Contract sections: E.1.a.vi.4.3 Implementation of neuroprostheses for high tetraplegia 
  E.2.a.ii.4.3 Implementation of advanced upper extremity neuroprosthesis 
 
Summary 
 In this quarter, four nerve cuff electrodes were successfully implanted in the upper 
extremity and trunk of a subject with high cervical level tetraplegia.  The electrode leads were 
connected to temporary percutaneous leads to allow the nerve cuff electrodes to be studied.  A 
second nerve cuff electrode implantation surgery that had been scheduled for this quarter in a 
subject with C5/C6 level tetraplegia was postponed for medical and personal reasons, and has 
been rescheduled for the next quarter. 
 
Methods 
“High Tetraplegia” neuroprosthesis candidate 

As stated in the previous quarter’s progress report, the candidate selected for this study is 
a 48-year-old African-American female who sustained a hemisection of the spinal cord at the 
C1-C2 level from a gunshot wound in 1994.  Her right upper extremity is totally paralyzed, while 
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her left upper extremity has diminished, but functional use.  She has diminished sensation in her 
right upper extremity, with some pain hypersensitivity. She also has diminished movement of her 
lower extremities, being able to stand for short periods, but not walk.  Due to the high level of 
her injury, there was little to no denervation of the upper extremity nerves that we tested, so that 
all the muscles of interest were able to be electrically activated.  This candidate has had far fewer 
secondary health complications than individuals with complete high-level spinal cord injuries 
tend to have.  Her muscle excitability, health status, and interest in participating in this research 
study make her an excellent candidate. 

In the first phase of the neuroprosthesis implantation, four nerve cuff electrodes were 
implanted, with the leads connected to percutaneous wires for external testing.  The four nerves 
implemented were selected based on previous work in this Contract, including cadaver studies 
and simulations performed with a model of the shoulder.  These four nerves are: 

• Radial nerve – four contacts on the cuff could allow selective control of elbow 
extension, wrist extension, and finger extension. 

• Musculocutaneous nerve – four contacts on the cuff could allow selective control of 
elbow flexion and forearm supination (biceps, brachialis). 

• Axillary nerve – whole nerve stimulation for arm elevation (deltoid). 
• Suprascapular nerve – whole nerve stimulation for stabilizing the rotator cuff capsule 

and humeral rotation (supraspinatus, infraspinatus). 
 
Results 
 
Axillary nerve 
 The axillary nerve was exposed and tested with a bipolar probe.  The nerve diameter was 
measured at 4 mm, so a 4 mm diameter nerve cuff electrode was selected.  The nerve cuff 

 
Figure 1.  Nerve cuff electrode being held by a double-hooked forceps prior to being 

placed around the musculocutaneous nerve. 
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electrode was placed on a custom-designed double-hooked forceps (Figure 1) to facilitate 
wrapping the cuff around the nerve.  The electrode was placed on the nerve and tested (see 
Figure 2).  Appropriate activation of the deltoid muscles was achieved. 

 
Radial nerve 
 The radial nerve was exposed near the location where the nerve branches to the long head 
of the triceps.  The nerve diameter was measured at 6 mm.  We wanted to investigate whether the 
different contacts of the cuff electrode could selectively activate different portions of the radial 
nerve, so a 6 mm diameter, four-lead electrode was selected (one lead for each contact).  We 
wanted to avoid stimulating the long head of the triceps (since it adducts the shoulder), so the 
cuff electrode was placed distal to the long head branch.  The electrode was tested by stimulating 
each contact.  Selective activation was observed, since one contact activated triceps without 
activating wrist extension.  One of the contacts appeared to have a high impedance, so the 
electrode was removed and tested.  All four contacts were functional, so the impedance was 
attributed to an air bubble over the contact.  The contacts were flushed with sterile saline and the 
electrode was placed back on the radial nerve at the same location as before.  Each contact was 
stimulated again and all four contacts were functional.  Selective activation of the triceps was 
observed again. 
 
Suprascapular nerve 
 The suprascapular nerve was exposed and tested with the probe.  The nerve diameter was 
measured at 3 mm, so a 3 mm diameter nerve cuff electrode was selected.  The electrode was 

 
Figure 2.  Nerve cuff electrode placed around the axillary nerve. 
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placed on the nerve and tested (see Figure 3).  Appropriate activation of the infraspinatus and 
supraspinatus muscles was achieved. 
 

 
Musculocutaneous nerve 
 The musculocutaneous nerve was exposed and tested with the probe (see Figure 1).  The 
nerve diameter was measured at 3 mm.  Since we wanted to also investigate selective activation 
on this nerve, a four-lead electrode was selected.  The smallest diameter four-lead electrode that 
we had available was a 4 mm diameter one, so we selected that one.  The electrode was placed 
on the nerve and tested.  Appropriate activation of the elbow flexors was observed, but we could 
not determine if the biceps and brachialis were being activated selectively with different 
contacts. 
 
Tunneling leads and percutaneous connections 
 The leads from all four cuff electrodes were tunneled to a site in the abdomen just under 
the ribs near where the stimulator will be placed.  A connector incision was made, and each lead 
was connected to a percutaneous lead adapter.  Each percutaneous lead was passed via an 
angiocath through the skin at a location lateral to the connector site.  After each percutaneous 
lead was tested to show electrical continuity to the cuff electrode, all the incisions were closed. 
 

 
Figure 3.  Nerve cuff electrode placed around the suprascapular nerve. 
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Post-surgical care 
 The incision sites were bandaged and the shoulder was stabilized with a velpeau 
restrictive dressing.  X-rays were taken of the arm and shoulder (see Figure 4).  Pins were 
crimped onto the percutaneous leads and placed into connector blocks so that cables could easily 
be plugged into the leads (see Figure 5).   The exit site between the two connector blocks was 
covered with a bandage.  The shoulder was stabilized for 3 weeks, after which the electrodes 
were characterized and exercise stimulation patterns were started. 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  X-ray showing 3 of the 4 nerve cuff 

electrodes. 

 
Figure 5.  Percutaneous leads in connector blocks. 
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Percutaneous Evaluation of Nerve Cuff Electrodes in High Tetraplegia 
 
Contract section: 

E.1.a.i.4.4.  Evaluation of single and multicontact cuffs via percutaneous leads 
 
Methods  
Implant:  Four percutaneous spiral nerve cuff electrodes were implanted in one subject with high 
cervical spinal cord injury.  Four channel electrodes (Figure 6B) were implanted on the radial 
and musculocutaneous nerves and single channel electrodes (Figure 6A) were implanted on the 
suprascapular and axillary nerves (Figure 6).  During the implant surgery, recruitment curves 
were generated by stimulating each contact and recording the EMG signals using needle EMG 
recording electrodes.  Following the implant, the subject’s arm was immobilized for three weeks 
with a sling and swab to allow for electrode encapsulation. 
 

 
Exercise:  Following the three week immobilization period, threshold and supramaximal 
activation values were determined for each electrode to verify muscle contraction and establish 
an exercise regime.  During this first stimulation session, the current intensity was slowly 
increased for each channel of each electrode.  Once the threshold and maximum values were 
determined, an exercise pattern was set-up that cycled stimulation between the shoulder and the 
arm.  The axillary and the suprascapular nerves were stimulated together, and the radial and 
musculocutaneous nerve were alternated.  The subject was instructed to exercise at home for two 
hours a day. 
 
Moment Measurements:  Tetanic stimulation (12.5 Hz) was used to measure the force production 
capabilities of the muscles at 7 and 9 weeks post implant.  To measure shoulder moments, the 
subject was placed in a setup consisting of a JR3 force and moment transducer attached to the 
endpoint of the humerus with the elbow bent to 90º.  The shoulder was position at 45º of 
abduction and 0º of horizontal flexion.  To measure elbow, wrist, and finger moments, the 
subject was placed in a device consisted of 4 individual four bar linkage transducers, one for the 
elbow and wrist and one for each of the first two fingers (see Figure 7). 

 
Figure 6.  Schematic of non-selective and selective electrodes.  Non-selective electrodes have all four contacts tied together, 

resulting in a single channel of stimulation.  Selective electrodes have four individually controlled contacts, 
resulting in four channels of stimulation. 
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Electromyography Recordings:  Surface and percutaneous EMG recordings were used to 
evaluate recruitment and selectivity of each nerve.  Twitch recruitment curves were generated 
using both monopolar stimulation and current steering (simultaneous, subthreshold activation of 
adjacent contacts).  Surface EMG recruitment was recorded at 5 weeks post implant to evaluate 
the stability of the electrodes and have baseline values.  Because of the accuracy required to 
evaluate selective activation, percutaneous EMG recordings were obtained 8 weeks post implant 
from the musculocutaneous nerve.  Evaluation of radial nerve selectivity is scheduled for a future 
test session. 
 
Results 
Sensation:  The subject could feel the stimulation and reported that it felt like a muscle massage.  
As stimulation was increased, the sensation spread to other portions of the forearm that 
corresponded to the appropriate dermatomes for the stimulated nerve.  Between threshold and 
supramaximal motor stimulation, the subject did not report any painful sensations.  If the 
stimulation levels were increased significantly beyond supramaximal, the subject would report a 
painful sensation. 
 
Electrode Positional Stability:  To determine if the electrodes move during and after the surgery, 
the recruitment curves generated intraoperatively were compared with curves generated 5 weeks 
post implant (Figure 8).  At both times, stimulation of channel 1 resulted in triceps activation 
before the other muscles while stimulation of channel 3 resulted in activation of triceps last.  
Qualitatively, the selectivity appears to have improved following electrode encapsulation.  This 
indicates that intraoperative testing is a valid predictor of chronic performance. 
 
 

    
Figure 7.  Pictures of moment measurement devices.  Left – JR3 mounted at the end of the humerus to 

measure shoulder moments.  Right - Four bar linkages used to measure moments at elbow, wrist 
and the first 2 fingers. 
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Thresholds:  The average threshold at 5 weeks post implant was 27 nC.  This is significantly 
lower than the 420 nC required for threshold activation of the triceps using muscle electrodes 
(Kilgore et al., 2003).  This lower threshold greatly reduces the power requirements of an 
implanted nerve stimulator.   
 
Selective Activation:  Monopolar cathodic stimulation selectively activated the triceps on the 
radial nerve (Figure 8) but was not capable of selectively activating the biceps or the brachialis 
on the musculocutaneous nerve.  Current steering (simultaneous subthreshold anodic stimulation 
of adjacent contacts) improved the musculocutaneous nerve selectivity (Figure 9) and has yet to 
be attempted on the radial nerve.  On the musculocutaneous nerve, stimulation of channel 1 with 
current steering on channel 2 activated 70% of brachialis before biceps reached 20% activation.  
Stimulation of channel 3 with current steering on channel 1 activated 70% of biceps before 
brachialis reached 30% activation. 
 

 
Figure 8:  Comparison of radial nerve electrode selectivity 5 weeks post implant to the selectivity recorded 

during the implant surgery.  The schematic in the upper left hand corner of each plot visually 
depicts the channel used for simulation.  Channel 1 activates triceps first in both cases and 
channel 3 activates triceps last in both cases. 
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Moment Production:  Moment measurements were made at 7 and 9 weeks post implant to 
address the effects of exercise and verify that there was no loss of strength.  A loss of strength 
would indirectly indicate a decrease in nerve function due to the implanted electrodes.  
Measurements were made at four pulse width values.  The maximum moments recorded at each 
session are shown in figures 10 and 11.  All electrode contacts produced greater or equal moment 
about all joints except contact 2 on the musculocutaneous nerve (Figure 10B) and channel 3 on 
the radial nerve (Figure 11C and 7D) where the fingers switched from a flexion moment to an 
extension moment.  Follow-up shoulder moment from the suprascapular nerve was not measured 
at week 9 but will be measured at a later date. 

   A      B 

 
Figure 9.  Pulse amplitude modulation recruitment curves from stimulating contact 1 and 3 on the 

musculocutaneous nerve with a pulse width of 50 �s.  The schematic in the upper left hand corner 
of each plot visually depicts the channel used for simulation, thick bar = cathodic stimulation, 
triangle = anodic stimulation..  (A) Cathodic stimulation of channel 1 results in simultaneous 
stimulation of the biceps and brachialis.  With current steering on channel 2, 70% of brachialis is 
activated before biceps reaches 20% activation.  (B) Cathodic stimulation of channel 3 results in 
simultaneous stimulation of the biceps and brachialis.  With current steering on channel 1, 70% 
of biceps is activated before brachialis reaches 30% activation..   
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Discussion 
The nerve cuff electrodes were placed around entire nerves that contained both motor and 
sensory fibers.  The one subject implanted had an incomplete injury and had full sensation but no 
motor function (motor C1) on her right arm.  Therefore, she was able to feel both the muscles 
contracting and tactile sensation from stimulation of sensory fibers within the nerve trunk.  To 
date, no specific exploration of her sensation has been performed but it is planned for October. 
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Figure 10.  Joint moments measured from axillary and musculocutaneous nerve stimulation at 7 and 9 
weeks post implant.   
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Figure 11.  Joint moments measured from radial nerve stimulation at 7 and 9 weeks post implant.  
Positive Y is an extension moment and negative Y is flexion. 
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Current steering was found to increase the selectivity of the cuff electrode on the 
musculocutaneous nerve.  Since the implanted stimulator is monopolar, there are several options 
for how to stimulate the musculocutaneous nerve without using current steering.  Functionally, 
both the biceps and the brachialis flex the elbow so it is not necessary to distinguish between the 
two for elbow function.  However, the biceps also supinates the forearm.  The amount of 
supination needs to be quantified so that the channel(s) that minimize supination will be attached 
to the implant.  Any unwanted supination that is present if the final system should be able to be 
balanced by stimulation of the pronator. 
 
Maximally stimulating the axillary and suprascapular nerves together causes abduction of 30-
40º.  The goal is to achieve 70- 90º.  To quantify the force production capabilities of these 
muscles, the total abduction force was compared to model simulations in the same position.  The 
model predicts that 430 N-cm is required from the deltoid to maintain the arm at 45º of 
abduction.  The measured deltoid abduction was 204 N-cm.  However, between 7 and 9 weeks, 
this abduction moment increases by 50%.  Additional increases are expected.  The unconstrained 
abduction should increase with stimulation of the serratus anterior (implant scheduled for 
November 3).  The serratus anterior improves scapular stability as well as rotating the scapula, 
which should allow for easier abduction. 
 
One unexpected finding from this subject was the activation of finger and wrist flexors from one 
channel of the radial nerve electrode.  These are functions normally produced by the ulnar nerve.  
The radial and ulnar nerves are not located close together in the arm (where the electrode was 
implanted) so it unlikely the result of current spillover but there could be some cross over in 
function in this subject.   
 
Conclusion  
This research testing is currently in progress.  Weekly experiments will continue until November 
3rd when the subject will receive the full upper extremity FES system.  The percutaneous 
connectors will be removed and the electrodes connected to implanted stimulators.  The goal is 
to have the subject controlling her paralyzed arm using voluntary neck EMG signals.  The 
percutaneous phase of this trial has been highly beneficial and demonstrated several key 
findings. 

• Non-penetrating, multicontact cuff electrodes can selectively stimulate individual 
muscles within a common nerve trunk; 

• Selectivity is improved with current steering; 
• Intraoperative testing of electrodes is a predictor of chronic performance; 
• Nerve stimulation thresholds are an order of magnitude below muscle stimulation; 
• Muscle force production is stable or increasing with exercise, indicating no adverse 

physiological consequences of the electrode implanted on the nerve; 
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Feed-Forward Control of Neuroprosthetic Systems Characterized by 
Redundant Muscles Acting on Multiple Degrees of Freedom 
 
Contract section: 

E.2.a.ii. Simultaneous and natural control of multiple arm and hand functions. 
 
Abstract 

We are developing a method of designing feedforward controllers based on inverse 
models on the musculoskeletal system being controlled. Our two-step design process, based on 
artificial neural networks (ANN) that are trained with experimentally measured input-output 
data, provides a unique optimal solution for control. We train two sets of artificial neural 
networks: the first set as system models, simulating the behavior of the biomechanical model but 
eliminating the inherent time-variance; the second set as inverse controllers to the 
musculoskeletal system, predicting stimulation pulsewidths required for achieving desired 
endpoint-forces. 

We are testing the design process in simulation, and we will follow this with 
experimental tests. For the simulation studies, we created a new static biomechanical model of 
the thumb and used it to generate time-varying, coupled, and redundant input-output data (i.e., 
isometric forces at the tip of the thumb in response to electrical stimuli). We created a time-
invariant forward neural network model (system model) of the thumb from these data, and used 
this forward model to average the input-output data, eliminating its time-variance. With the 
system model, we created optimized input-output data using a minimum co-activation criterion 
to eliminate redundancy and coupling, obtaining thus a unique solution. We used the optimized 
and unique input-output data to train an inverse-model static feedforward artificial neural 
network controller. We tested the controller isometrically in simulation with the biomechanical 
model of the thumb. 
 
Background 

A potentially attractive method for implementing feedforward controllers for 
musculoskeletal systems with multiple degrees of freedom and complex mechanical interactions 
is the use of inverse models of the musculoskeletal systems under control. Artificial neural 
network based controllers offer the advantages of being able to model complex nonlinear 
relationships using easily obtained input-output data. However, because the relationships 
between muscle outputs and electrical stimuli are redundant, we need to choose a single inverse 
solution (i.e., eliminate redundancy) before training the controller. 

We previously developed a method for implementing feedforward neuroprosthetic 
controllers for musculoskeletal systems with multiple degrees of freedom and complex 
mechanical interactions. These controllers rely on inverse models of the musculoskeletal systems 
under control. Our tests showed that controller performance was poorer than we expected, and 
we attributed the poor performance to redundancy of the data used to train the controllers. The 
inverse relationship between muscle output and electrical stimulation is not unique (most joints 
have redundant actuation with non-stationary input-output muscle properties and coupled 
degrees of freedom) and if left unrestricted, the controller implementation process may result in 
an unsuitable inverse. Thus, we must choose a single inverse solution before the controller is 
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created. Our present work involves obtaining this unique inverse solution and using it to train a 
controller capable of providing independent control of coupled degrees of freedom.  

Proper training of artificial neural network-based controllers sometimes requires large 
amounts of data that cannot be collected in a single experimental session. It has been our 
experience that SCI individuals who have received an implanted neuroprosthesis have busy 
schedules and/or difficulties visiting the hospital for research participation. This lack of 
availability limits the amount of data we can obtain and makes controller fine-tuning more 
difficult. For this reason, we created a model of a human thumb to help us develop and fine-tune 
the inverse controller. This in turn will allow us to estimate the minimal amount of data we need 
to collect with the SCI population, hopefully decreasing the time each individual has to spend in 
the laboratory.  

Our general approach was to first create a time-invariant forward neural network model 
(system model) of a computer-simulated thumb using time-varying, coupled and redundant data 
relating muscle stimuli to muscle outputs. We used the forward model to average the input-
output data and thus eliminate its time-variance. We then chose unique input-output data from 
the time-invariant set to optimize specific performance criteria, such as minimum co-activation, 
allowing us to eliminate redundancy and thus obtaining a unique solution. We trained an inverse-
model, static, feedforward, artificial neural network controller with these optimal input-output 
data. We tested the controller isometrically with the simulation model. 
 
Structure of the biomechanical model 
 
Skeletal model 

We created, in simulation, a static biomechanical model of a human thumb that allows us 
to generate time-varying, coupled, and redundant input-output data (i.e., isometric forces at the 
tip of the thumb in response to electrical stimuli).  

We modeled the thumb as two cylindrical rigid bodies (the metacarpal bone and 
phalanges) connected by a revolute (metacapophalangeal, MP) joint. We modeled the proximal 
and distal phalanges as a single rigid body by fixing the interphalangeal (IP) joint when the 
longitudinal axes of the proximal and distal phalanges were colinear. The proximal end of the 
metacarpal bone was attached to a universal (carpometacarpal, CMC) joint linking it to the 
trapezium, which was fixed in space (i.e., no arm rotation was allowed). The tip of the thumb 
was also fixed in space to a force/moment sensor so we could measure isometric forces (Figure 
12). The geometric parameters were taken from the literature, and are summarized in Table 1. 
 
Table 1. Skeletal parameters of the thumb [Esteki 1995, Esteki and Mansour 1997]. 
 

Bone Length (cm) 1 Radius (cm) 1 Specific mass (g/cm3) 2 
Metacarpal 7.20 1.50 1.1 

Proximal phalanx 3.90 1.10 1.1 
Distal phalanx 2.00 1.10 1.1 

 
1 Esteki 1995, 2 Esteki and Mansour 1997. 
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We control the isometric forces at the tip of the thumb through moments acting at the 

CMC and MP joints. The two degrees of freedom (i.e., flexion/extension and 
abduction/adduction) are actuated by four muscles (extensor pollicis longus (EPL), abductor 
pollicis brevis (AbPB), adductor pollicis (AdP), and flexor pollicis longus (FPL)). Since the 
muscles have moment arms about both axes, their actions are coupled, and since there are more 
muscles than degrees of freedom, there is redundancy. 
 
Muscle model 

 
Individual muscle forces will depend primarily upon their muscle activations and time 

(i.e., the geometry of the muscle and nerve with respect to the stimulating electrode will not 
change significantly).  

The peak isometric force and muscle geometric parameters for the four muscles included 
in the model were taken from the literature [Esteki and Mansour 1997, Brand et al. 1981] or 
estimated using parameters taken from the literature, and are summarized in Table 2.  
 
Table 2. Muscle parameters. Lo represents the optimal muscle length. Fo is the maximum force produced 

when the muscle is at its optimal length. Lst is the tendon slack length. 
 

Muscle Lo (cm) 2, 3 Fo (N) 2 Lst (cm) 4 
EPL 5.7 38 21 
FPL 5.9 102 32.15 

AdPo 3.6 18 2.25 
AdPt 3.6 48 3.5 
AbPB 3.7 30 2.55 

 
2 Esteki and Mansour 1997, 3 Brand et al. 1981, 4 Estimated. 
 

 
 

 
Figure 12. The trapezium and the tip of the thumb are both fixed in space. The IP joint is fixed. 

The MP joint is modeled as a revolute joint while the CMC joint is modeled as a 
universal joint. The Cartesian coordinate system is fixed. 
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For simplicity, we used a Hill based muscle model incorporating only length-tension 
properties. We omitted activation dynamics and force-velocity properties because we will 
perform static analysis only. We modeled muscle force (Fm ) with the equations given below. 
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Where 
 
Fm  = muscle force 
f(i)       = fatigue factor 
A = muscle activation 
KT = tendon stiffness 
r = moment arm 
θ2 = MP flexion/extension angle 
θ1 = CMC flexion/extension angle 
φ1 = CMC abduction/adduction 
angle 
Lm = muscle length 
Lt = tendon length 
Lmt = muscle-tendon length 
Lst = tendon slack length 
L’ = muscle-tendon unit length 
when all joints are at 0o 

Lo = optimal muscle fiber length 
~ = normalized 
 

 
Muscle activation was modeled as a nonlinear function of the electrical stimulus u given 

by a sigmoidal relationship of the form ( )ue
uA −+

=
1

1
)( (Figure 13). 

 
 

To account for the time-varying properties of muscle, we introduced the linearly-
decreasing normalized fatigue factor f(i) (Figure 14) to scale the maximum muscle force oF . The 
fatigue factor reduced the maximum muscle force by 4.2% per 100 muscle contractions [Kilgore 
1987]. We also added or subtracted random noise (as 10% of the muscle force) to the muscle 
force with every muscle contraction. We assume muscle potentiation is eliminated by 
conditioning contractions prior to performing any measurements. 
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Figure 14.   Normalized fatigue factor f(i) as a function of muscle contraction. 

 

 
Figure 13. Simple nonlinear recruitment characteristics. Muscle activation as a 

function of normalized muscle stimulus. 
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Model equations 
 

The thumb model, which we will refer to as the limb model, is defined by the 

equation FJ T=τ . Thus, to find the end-point forces, we solve for ( ) τ-1TJF = , where  
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and 
 
Fx = Force exerted at the tip of the thumb along x axis. 

Fy = Force exerted at the tip of the thumb along y axis. 

Fz = Force exerted at the tip of the thumb along z axis. 

LPH    = Phalanges length. 

LMC   = Metacarpal length. 

LTIP = Distance from the base of the metacarpal to the tip of the phalanges on the y-z plane. 

MMP_FE = Flexion/extension muscle moment exerted at the MP joint. 

MCMC_FE = Flexion/extension muscle moment exerted at the CMC joint. 
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MCMC_AA = Abduction/adduction muscle moment exerted at the CMC joint. 

JT = Transpose of the Jacobian matrix. 

θ1 = Metacarpal flexion/extension angle. 

θ2 = Phalanges flexion/extension angle. 

φ1 = Metacarpal abduction/adduction angle. 

R = Moment arm as a function of angle. 

i = Each muscle. 
 
 
Computer Simulations 

 
Data collection 

 
We fixed the CMC joint at 20 degrees of extension (θ1=20) and 15 degrees of adduction 

(φ1=15), and the MP joint at 20 degrees of flexion (θ2=-20) (Figure 15). 
 

 
The simulations were performed with 10% random noise in each muscle (i.e., with 

independent noise distributions) and a fatigue rate of 4.2% per 100 muscle contractions. 
We generated time-varying coupled and redundant input-output data with the limb model 

by controlling the muscle forces with stimulus pulsewidths. We used the origin (i.e., no 
stimulation) in addition to another six pulsewidths that result in seven equally-spaced activations 
spanning the activation range (Figure 16), ensuring we covered the space of possible input-

 

 
 
Figure 15. Thumb model in the y-z plane. The coordinate system is expressed with respect to the 

CMC joint. The y-z plane is rotated about the z-axis with changes in φφφφ1111.  
θθθθ1=20 (extension), φφφφ1=15 (adduction), and θθθθ2=-20 (flexion). 
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output combinations. We stimulated all muscles simultaneously at all combinations of 
pulsewidths for a total of 73 (343) trials (Figure 17, bottom) and measured the contact forces at 
the thumb tip in the x-z plane for each pulsewidth combination, (Figure 17, top).  

 

 

 
Figure 17.  Forces measured in the x-z plane during stimulation of three muscles: extensor pollicis 

longus (EPL), abductor pollicis brevis (AbPB), and adductor pollicis (ADP). For clarity, 
only 216 points are shown. 

 

 
Figure 16. Initial pulsewidths spanning the muscle activation range. 
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System Model 

We used these data to implement a deterministic neural network system model. This 
system model is a time-invariant forward model of the biomechanical model. The neural network 
has three inputs (EPL, AbPB, and AdP pulsewidths), six hidden neurons, and two outputs (Fx, 
and Fz). The neural network also has sigmoidal [Narendra and Parthasarathy 1991] and linear 
[Jonic et al. 1999] transfer functions for the hidden and output layers respectively. 

We trained the system model off-line on a data subset containing 80% of the time-
varying input-output data measured. The other twenty percent of the data was randomly removed 
and used as a validation set to prevent data over-fitting (i.e., the validation set was used to stop 
training if further training would result in worse generalization). We selected the Levenberg-
Marquardt algorithm because we have a small network size, small amounts of data, and used off-
line training [Demuth and Beale 2000, Reed and Marks 1999, Jonic et al. 1999]. The training has 
a variable learning rate with a random initial selection of the weights. 

We trained the system model for 1000 epochs. Training was stopped ahead of time if the 
validation mean squared error (MSE) increased or if the fitting MSE goal (1e-6) was reached. 
Preliminary results suggested that training neural networks like the one described above for more 
than 1000 epochs do not result in improved generalization capabilities and may result in data 
overfitting. Furthermore, when the validation set is used, training is always terminated before 
600 epochs.  

No amount of training can create information that is not contained in the training data. 
Thus, by using pulsewidths that result in equally-spaced activations spanning the activation 
range (Figure 16) and taking advantage of the good interpolating capabilities of artificial neural 
networks, we can ensure that the network generates accurate force predictions even for inputs not 
included in the training data set.  

Network generalization also depends on the initial weights, so we trained 10 neural 
networks using different random initial weights and selected the network with the smallest fitting 
MSE (i.e., when presented with the training data) as our system model.  
 
Unique solution 

We used the trained system model to generate smooth time-invariant data (Figure 18).  
We input pulsewidths ranging from activation threshold to saturation to the system model and 
generated the corresponding outputs, generating more data than previously measured from the 
static biomechanical model. 
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Figure 18. System model eliminates time variance. e.g., Fz as a function of muscle stimulation. AdPo is 
held at constant stimulation (UADP=0.5). Solutions are represented as contours characterizing 
the redundant input-output properties of the model for different levels of muscle activation. 

 
The data generated with the system model contains redundancies due to muscle 

cocontraction. We defined a cocontraction cost function that measures the goodness of each 
solution by calculating its energy. We defined energy (E) as the sum of the squares of the 
normalized muscle activations ( )222

ADPoAPBEPL UUUE ++= . 
Our optimization criterion for eliminating redundancy from the system model input-

output data by minimizing the total normalized muscle activation was the following: 
 

( )[ ]222 minimize ADPoAPBEPL UUUE ++=  ( ) ( ) 0ˆˆ that such
22

=−+− zzxx FFFF , where 
 

E = Energy 
U = Stimulus pulsewidth applied to each muscle 

xF  = Force exerted at the tip of the thumb along x axis 

zF  = Force exerted at the tip of the thumb along z axis 

xF̂  = Desired force at the tip of the thumb along x axis 

zF̂  = Desired force at the tip of the thumb along z axis 
 
Reduction in muscle cocontraction decreases muscle fatigue, so it is important to 

determine if the optimization process resulted in decreased activations. To do this we selected a 
set of target force vectors across a subset of the force domain (Figure 19) and compared the 
pulsewidths necessary to achieve those target forces predicted by a controller trained on 
optimized data and a controller trained on non-optimized data. The polar plots in Figure 20 show 
that the optimization process resulted in decreased activations for all three muscles in most force 
directions (Figure 20a), and that there was a general reduction of energy with respect to the non-
optimized controller (Figure 20b).  
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Figure 19. The area spanned by the blue dots represents the domain of possible forces. The red circle 

represents the target force vectors with a magnitude of 2N around the origin used to test the 
trained inverse controllers and compare the energies between optimized and non-optimized 
controllers. 

 
 

 

 
(a) 

 

 
(b) 

Figure 20.   Pulsewidths and energies produced by the optimized and non-optimized controllers in 
response to the target forces (i.e., circle) shown in Figure 19 as a function of force vector angle. 
(a) The optimized pulsewidths are lower than the non-optimized in most force directions. (b) 
The energy for the optimized controller pulsewidths is always lower than the non-optimized 
controller energy. 
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We performed a partial monotonicity test of the system model by systematically fixing 

two inputs (i.e., stimulus pulsewidths to two muscles are set to zero) and monotonically 
modulating the other, verifying that the force output (i.e., along both axes) also varies 
monotonically and therefore guaranteeing the uniqueness of the data (Figure 21). To fully test for 
monotonicity we would need to apply this criterion to all possible combinations of stimulus 
pulsewidths for all three muscles. 

 

 
Inverse Controller 

We trained a second ANN as a deterministic inverse model of the thumb using the 
optimal input-output data. The architecture of the feedforward controller was similar to that of 
the system model: sigmoidal and linear transfer functions for the hidden and output layers 
respectively, with two inputs (forces along x and z axes), six hidden neurons, and three outputs 
(stimulus pulsewidths for all three muscles).  We trained the feedforward controller using the 
Levenberg-Marquardt algorithm for the same conditions as the system model (i.e., measuring 
MSE with an error goal of 1e-6 and training for up to 1000 epochs). We trained 10 neural 
network controllers using different random initial weights and selected the network with the 
smallest fitting MSE as our inverse controller.  

 
Controller Test 

We tested the ability of the feedforward inverse controller to predict stimulus pulsewidths 
required for control of the limb model under isometric conditions. First we specified different 

 

 
Figure 21. Forces measured in the x and z axes during stimulation of only one muscle in the 

system model while the other two are not stimulated. (e.g., when the extensor pollicis 
longus (EPL) is stimulated, abductor pollicis brevis (AbPB) and adductor pollicis (ADP) 
are not). 



Quarterly Progress Report #18 N01-NS-1-2333 10/31/05 
  PI: R.F. Kirsch, Ph.D. 
 

 24  

sets of target forces in the x and z directions (e.g., two different force magnitudes about two 
axes: flexion/extension and adduction/abduction) within the training data domain and then used 
the feedforward controller to predict the stimulus pulsewidths required to elicit these target 
outputs. We then stimulated the limb model with these pulsewidths and measured the actual 
outputs of the limb model in response to stimulation. Note that the limb model included noise 
and fatigue, which are at least partially responsible for the variable error. 

Figure 22 shows two sets of target forces over two different areas of the force domain 
with their respective actual forces resulting from limb model stimulation using pulsewidths 
predicted by optimized and non-optimized inverse controllers.  

Figure 23 shows a third set of target forces with the respective actual forces resulting 
from stimulation with controller-predicted pulsewidths over an evenly-sampled area of the force 
domain. The errors between the target and actual forces are small. The pulsewidths predicted by 
the optimized inverse controller are shown. Optimization guarantees that not all muscles are 
stimulated at high levels at the same time reducing muscle cocontraction. 

 

 
Figure 22.  Target and actual forces in response to controller-predicted stimulation over two 

regions of the force domain. The pulsewidths are not shown. The black and magenta 
lines are the actual forces generated by the limb model when stimulated with the 
pulsewidths predicted by the optimized and non-optimized inverse controllers, 
respectively, in response to the target forces shown by the red circles. 
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The optimized inverse controller resulted in good force tracking throughout the force 

domain for the tests depicted in Figures 22 and 23 in the presence of noise and muscle fatigue. 
 
Performance Analysis  

We performed a statistical comparison between the target and actual limb model outputs 
to determine the effectiveness of the controller. An effective controller is one for which the 
differences between the actual and target forces are small (i.e., root mean squared error less than 
2N) and mainly due to variability in the limb model and not induced by the controller. We 
analyzed controller performance with two variability measurements: system variability and total 
variability.  

The system variability indicates how much the limb model outputs vary with time (e.g., 
variability due to noise and muscle fatigue). We estimated system variability by comparing two 
sets of limb model outputs (Factual1 and Factual2) generated at two different times in response to the 
same inputs (i.e., pulsewidths predicted by the controller in response to Ftarget).  
 

( )

k

xFxF
yvariabilitsystemS

k

i
iactualiactual

S

2

1
21

2

)()(
_

�
=

−
== , 

where xi is the pulsewidth vector at iteration i, and k is the number of input/output combinations 
in the data set. 

 

 
Figure 23.  Upper plot: Dotted line shows the desired (i.e., target) forces while the 

solid line shows the actual forces, along the x axis. Middle plot: Target and 
actual forces along z axis. Bottom plot: Activation pulsewidths predicted by 
the optimized inverse controller. Not all muscles are stimulated at high 
levels at the same time. 
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Total variability is a measurement of the difference between the targets and the actual 
limb model outputs and provides an indication of the suitability of the network-predicted 
pulsewidths for achieving the targets (i.e., prediction error).  
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If the square root of the system variability was higher than 30% of the mean limb model 

output (i.e., targetS FS 3.0> ) we considered the limb model as not controllable and therefore we 

could not evaluate controller performance. If the system was controllable (i.e., targetS FS 3.0≤ ), we 
evaluated controller performance by first comparing the total variability to the system variability. 
For the tests performed, the square root of the system variability was between 0.6 and 0.7N while 
the mean limb model output was 1.1N. 

We tested an equality of variances hypothesis 22: TSo SSH =  using a Modified Levene Test 

( 22
TSo SSF = ). The rejection criteria were 1−1,− /2, 21

> nnα F Fo  or 1−1,− ,/2− 21
< nn)(1o  F F α , where 1−1,− /2, 21 nnαF  

and 1−1,− ,/2− 21 nn)(1F α  represented the upper .025 and lower 0.975 percentage points of an F 

distribution with n1-1 and n2-1 degrees of freedom (α=0.05).  
We failed to reject the null hypothesis (Ho) with p-values > 0.2. We tested a second 

hypothesis of equality of means actualtargetoH µµ =′ :  using a t-test.  We also failed to reject the 
null hypothesis (Ho’) with p-values > 0.7. This evidence suggested that the controller was not 
adding significant variability to the force errors. 
 
Conclusions 

The results suggested that it is possible to design an inverse controller from input-output 
data and that the controller accurately predicts the pulsewidths required to achieve the desired 
outputs. We also showed that we can use a system model to eliminate time-variance from the 
data and an optimization process to eliminate redundancy. 
 
Next Quarter 

We will perform a series of computer simulations to determine the optimal number of 
hidden neurons for the system model and inverse controller. We will systematically vary the 
number of hidden neurons in the system model and inverse controller and measure the force 
prediction error and energy used.  

We will test the controller isometrically with able-bodied and spinal cord injured human 
subjects. We will first study redundancy by stimulating only a pair of antagonists (extensor 
pollicis longus and abductor pollicis brevis) controlling flexion/extension of the thumb’s 
carpometacarpal joint. We will incorporate coupling to the system by stimulating an additional 
muscle (adductor pollicis) allowing us to control abduction/adduction as well. We will use the 
same approach used in the computer simulations for the real musculoskeletal systems studies. 

We have obtained IRB approval for surface stimulation and are in the progress of 
obtaining a surface stimulator that can be controlled in real-time with a computer. 
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Real-time EEG control of virtual cursor/arm movements  
 
Contract section: E.1.a.iv Command sources for high tetraplegia 
 

We found some bugs in our earlier software 
for adaptively decoding EEGs into 
multidimensional cursor movements. This revised 
software now works even better than before and 
has enabled two subjects to very rapidly achieve 
significant 2D cursor control within the first 
training session via the same adaptive decoding 
process previously used in monkeys (Taylor et al, 
2002). (Note one subject had no prior training and 
the other had one 30-minute training session 3 
months earlier which was unlikely to have any 
impact on initial performance after that long of a 
delay). In our previous monkey studies, the 
coadaptive algorithm was used with intracortical 
firing rates. In this study the same algorithm is 
used only the inputs are the power in different 
frequency bands at different electrode locations. 
This rapid learning of 2D control from scalp 
surface EEGs is unprecedented as previous reports 
in the literature suggest many weeks of training is 
necessary for 2D control from the low resolution 
scalp surface EEG (Wolpaw, et al 2004).  Figure 
24 shows EEG controlled trajectories from one subject after only 40 minutes of training in a 1D 
task followed by 20 minutes of training in the 2D task. Although this is far from perfect, 
trajectories to the four targets (differentiated by color) clearly tend to go in distinctly different 
directions over the 2D workspace.  

The linear decoding we used showed consistent errors, including a tendency to move 
more in diagonal directions than horizontal or vertical direction. This problem is characteristic of 
a positive correlation between the features of the signals that are being used for horizontal and 
vertical control. We then created a transformation function that specifically normalizes for these 

 
Figure 24. 2D trajectories generated by willful 

modulation of scalp surface EEGs after 
subject had only 20 minutes of coadaptive 
training in this 2D task. Random weights 
were used in the initial decoder and were 
iteratively adjusted every few minutes 
based on the neural activity seen during 
attempted movements. Trajectories are 
color coded by intended target. Actual 
target positions are show by the four stars.  
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sorts of correlations in the neural data (i.e. correlations that result in oval trajectory distributions 
along a diagonal). Figure 25 illustrates this simplistic normalization function. 

 

 
Figure 26 shows trajectories that were made by 

including this simple correlation compensation 
procedure at each timestep in a center out 2D real-time 
cursor control task. Although this correlation 
correction procedure did more evenly distribute 
trajectories throughout the workspace, there were still 
asymmetries that were not corrected via this simple 
correlation correction algorithm 

 We are now working on a simple neural 
network based non-linear transformations of the 
decoder outputs to achieve a more uniform level of 
control throughout the workspace. Decoder output non-
linearities were something often seen in our prior 
monkey work where multichannel unit activity was 
decoded using linear decoding algorithms. Although 
the animals eventually learned to modify their neural 
activity to better match the imposed linear decoding 
function, developing methodologies for including an 
efficient non-linear transformation step at the output 
stage of the decoder can have applications that go beyond the EEG-based cursor control shown 
here. These methodologies can be applied to any biopotential signals (intracortical unit activity, 
ECoG, EMGS, etc). Inherently, using a linear mapping of high dimensional ‘neural space’ (e.g. 
many electrode channels) to a low dimensional output space (limb endpoint and hand orientation 
control) is most efficient. Then a non-linear transformation can be more efficiently applied in the 
low-dimensional output space to correct for the fact that the inputs were actually non-linear in 
nature. 

 
Combined EEG/EMG control from the same electrodes. 

Scalp surface or subcutaneous EEG signals gathered over the motor areas of the brain are 
inevitably going to be contaminated with EMG artifacts from jaw activity. These EMG artifacts 

 

 
Figure 25. Simple correlation correction procedure. At each time step, the velocity vector is rotated 45 degrees, 

normalized to the same average magnitude in the vertical and horizontal direction (e.g. x’= x*E[x+y/2]/E[x] 
where E[] indicates ‘expected value’ determined from an initial set of data gathered before compensation), 
and then rotated back 45 degrees to the original orientation. 

 

 
Figure 26. EEG-controlled trajectories 

made via the linear adaptive 
decoding algorithm followed 
by a simple real-time 
correlation compensation 
procedure at each timestep. 
Trajectories are color coded 
by intended target. 
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in the EEG signal can be looked at as a problem or as an opportunity. They are problematic in 
that naturally occurring EMGs from swallowing, chewing, talking, etc. can interfere with the 
normal EEG signal, and periodic swallowing of saliva is a necessity that is hard to ‘schedule’ in 
between generating limb command signals. However, the EMGs themselves can be used as a 
command signal that is even larger in nature then the EEG signal itself. Because random EMG 
activities over the motor areas naturally occur and are hard to prevent, they may not make sense 
as a continuous proportional command signal. However, distinct patterns in the EMG can be 
effectively used as a discrete command signal if the EMG pattern generated as a command is 
distinct from that which occurs during the course of normal activities. We have tested the ability 
to detect a rapid double jaw clench from EEG electrodes placed over the motor cortices, and 
differentiate it from normal chewing, swallowing, and talking activities. We have been able to 
get 100% correct classification using linear combinations of the RMS EMGs over a moving time 
series of windows. We are now working to adjust the number, width, and distance apart of these 
windows to generate robust classification of willful double jaw clicks against a wider range of 
chewing and swallowing activities. 

The ability to use these EMGs in conjunction 
with EEGs is dependent on the ability to separate out 
the low amplitude EEG from the EMG before 
decoding of the EEG signals. Surface EMGs contain a 
range of frequencies that include the EEG range at the 
low end and peak at 100 Hz or more. Since non-
invasive EEGs do not contain frequencies in the 100 
Hz range, the frequency content of the signal at or near 
100 Hz can potentially be used to estimate the EMG 
contamination in the lower EEG ranges. We 
investigated how well frequency amplitude in the 100 
Hz range predicted the amplitude in the 12 Hz range 
during intentional EMG artifact generation, and found 
a clear linear relationship that can potentially be 
exploited to remove EMG artifacts in the EEG range 
(see Figure 27). It appears that a simple linear 
correction function can be used to remove EMG 
contributions. We are now investigating the effect of 
this removal function on the overall quality of EEG 
control. If EMG can be successfully removed with 
little or no degredation of the EEG signal, this will allow us to combine the EEG continuous 
commands with the EMG-based discrete commands while also eliminating effects of naturally 
occurring EMG activity. 
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Figure 27. EMG  contamination in the 

EEG range as a function of EMG 
content in a non-EEG range (i.e. 
100Hz). This relationship can be 
used to identify and subtract out 
EMG contamination in the EEG-
based command signal. 


